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Input-output relation of FitzHugh-Nagumo elements arranged in a trifurcated structure
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In this study, the propagation of an action potential in a network of excitable elements is studied numerically.
The network we consider consists of excitable elements arranged in the shape of a trifurcated structure having
three cables. The system has a branch point, a Y junction, at which the three cables are joined. Two types of
external stimulations are considered: a single impulsive stimulation at one of the cable terminals, and a pair of
stimuli applied to two different terminals. We have found three basic phases depending on the excitability of
the elements for a single external stimulus as follows: (1) signal distributor—as the excitability gets higher, the
pulse generated by a stimulus splits into two at the branch point, and two pulses are transmitted to the opposite
terminals, (2) propagation block—the pulse in the lower excitable chain is blocked at the branch point, and (3)
transient propagation—as the excitability is decreased further, we see that the pulse vanishes before reaching
the branch point. By the interaction between the pulses that originate from different sources, signal transmis-
sion is recovered if the pulses arrive at the branch point nearly synchronously or after a specific delay time. The
effects of the repetition of these two types of stimulation are also investigated. Complex spatiotemporal
patterns occur due to pulse-pulse interaction and collisions at the branch point. The input-output relationship,
which depends crucially on the repetition period and the time lag between the pair of stimuli, is characterized
by the stimulus-response ratio and the interspike interval. We also show the effects of noise on the distribution

of the interspike interval.
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I. INTRODUCTION

From the time the work of Hodgkin and Huxley [1] first
appeared, and after the basic mathematical model by
FitzHugh and Nagumo [2,3] was developed, the number of
research reports on the subject of excitable elements has in-
creased enormously. It is well known that excitability is a
key property of many physical systems and plays a funda-
mental role in neural information processing as well as many
other biological systems. For a simple excitable element, a
small but finite perturbation to a rest state leads to a large
excursion (an excitation). The excitation of a single element
has been successfully modeled by ordinary differential equa-
tions. This excitation is associated with an action potential
(AP) in a nerve or heart tissue.

Repetitive stimulations to a single neuron show a variety
of response patterns [4—6]. For spatially extended excitable
systems, it is known that a localized stimulus of a finite
amplitude forms a stable propagating pulse. Instabilities and
entrainment of propagation originating from a pulse-pulse
interaction in an excitable medium have been reported in
[7-9]. It is also shown that repetitive localized stimuli show
exotic behaviors, e.g., propagation failure and resonance
phenomena [10]. Thus, spatial degrees of freedom might
play a crucial role in determining the dynamical behavior
and information processing in a neuronal system.

Most neurons have complicated shapes, particularly bifur-
cation patterns in dendrites and axon terminals. Specifically,
dendrites tend to bifurcate repeatedly and create a (often sev-
eral) large and complicated tree. A particular dendritic mor-
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phology behaves as a complex dynamical device with poten-
tially rich repertoires of input-output capabilities [11-14].
Here, the branch point (the junction) of cables might play a
crucial role in determining the pulse propagation on a den-
dritic tree. Thus, single-element models are too simple to
allow the activity on an actual neuron to be studied. In fact,
an AP can either completely fail to propagate beyond the
branch or succeed in propagating beyond the branch point
[15,16].

Mathematical models for aiding the exploration of the
physiological implications of dendritic branching have been
developed over the past decades [12,13,15,17]. The concept
of “impedance mismatch” is an important result of the theo-
retical studies [15,16]. When an AP propagates toward a re-
gion with a geometrical change (e.g., a branch point), the
propagation of the AP near this point will continue unper-
turbed if the impedance load in front of the AP remains as in
a uniform cylinder. If, however, the impedance at the geo-
metrical change is smaller than that in the parent cable, the
AP will suffer a larger current sink from the regions beyond
the geometrical change and both its velocity and amplitude
will be reduced as it approaches the geometrical change.
When such an impedance mismatch is moderate, the AP will
succeed in actively propagating (after some delay) beyond
the branch point, and it will regain its original shape and
velocity. For a sufficiently large impedance mismatch, how-
ever, the AP will completely fail to propagate beyond the
branch point (propagation block).

The effects of geometrical changes in passive cables have
been extensively studied through cable theory. However,
multiple APs originating from different sources will propa-
gate in a branch tree simultaneously. APs will interact with
or collide in the vicinity of a branch point. Particular combi-
nations of input patterns in time and space might play crucial
roles in the interaction; this depends on whether APs origi-
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FIG. 1. Trifurcated structure consisting of three one-dimensional cables, i.e., Y-junction cables, is shown schematically. The excitable
elements are aligned on the cable, as shown in Fig. 2. (a) By a single impulsive stimulus applied to the terminal of cable A, a pulse is formed
and propagates in the thin cable. (b) A pair of impulsive stimuli with a time delay is applied to both terminals of cables A and B. Two pulses
are generated by the pair stimuli. These dynamical behaviors depend crucially on the timing of the stimulation.

nating from different sources arrive at a branch point syn-
chronously, or nearly so. Although a real neuron has a com-
plicated tree structure and local dynamics, it is important to
study how a simple geometrical change influences the AP
propagation in response to the temporal properties of afferent
impulses. In this paper, we consider an active cable with a
geometrical change. A simple branch point might be a Y
junction, at which three cables are joined. Here, we analyze a
mathematical model consisting of three thin cables con-
nected to each other at a branch point. Each cable is repre-
sented as a chain of excitable elements and they are con-
nected to form a Y junction, as depicted in Fig. 1. By
stimulating the terminal(s) of cable(s), we numerically ex-
plore the effect of the branch point on spatiotemporal pat-
terns in the array of FitzHugh-Nagumo (FHN) excitable el-
ements. All geometrical changes occur at one point (the
branch point), and all the specific electrical properties are
uniform over the whole structure. It is also assumed that the
branch point is electrically distant from any boundary effects
(i.e., all branches have constant parameters, and all terminals
are sufficiently far from the branch point). Furthermore, the
distance between the elements is sufficiently small as com-
pared to the width of the propagating pulse in the cable.
When we stimulate one of the terminal nodes, i.e., the
input node, by a single impulse, an excitation occurs, and
then a pulse forms and propagates in the father cable. De-
pending on the excitability of elements, the pulse can either
completely fail to propagate beyond the branch, or succeed
in propagating beyond the branch point to two daughter
cables. The following three phases are found depending on
the excitability of elements. (i) Signal distributor—the pulse
propagates in the father cable and reaches the branch point.
Then it splits into two, and reaches the opposite terminals of
the daughter cables for higher excitability. (ii) Propagation
block—the propagating pulse is blocked at the branch point
and cannot surmount it. (iii) Transient propagation—for
lower excitability, the pulse propagates transiently in the fa-
ther cable and vanishes before it reaches the branch point.
If the AP propagating from the father cable surmounts the
branch point and this leads to the excitation of the opposite

terminal, we regard the excitation as an output signal. The
time interval between the excitations of input and output
nodes, i.e., the elapsed time, depends on the excitability of
the elements. The elapsed time increases as the excitability
decreases and takes a maximum in the vicinity of the bound-
ary between the signal-distributor and propagation-block
phases. The branch-point-induced delay is also found in the
compartment model [18,19].

The time sequence of output signals depends significantly
on the repetition period when successive stimuli are applied
to the input node. Because the model includes spatial degrees
of freedom, the dependence of the output signals on the rep-
etition period originates from an interaction between succes-
sive pulses propagating in the cable. Although a single pulse
fails to propagate in the propagation-block phase, the repeti-
tive stimulation leads to it surmounting the branch point.
This signal transmission, however, occurs only for specific
repetition periods. Thus, the system can act as a band-pass
filter.

Even if the pulse generated by a single impulse vanishes
at the branch point in the propagation-block phase, transmis-
sion of input signals is observed when the two terminals of
the cables are stimulated. This transmission occurs only for
the pair of input impulses with shorter time lags. For longer
time lags, the propagation of the pulses is blocked at the
branch point. More precisely, the input signal is transmitted
to the daughter cable when the time lag is integer multiples
of the intrinsic period of the excitable elements [10,20]. This
means that the simple trifurcated array of the excitable ele-
ments acts as a coincidence detector.

The repetition of the pair of impulses also leads to com-
plex spatiotemporal behaviors. Both the repetition period and
the time lag between the pair impulses affect the input-output
relation. Since the time lag between the pair of impulses is
sufficiently short, the input signal is transmitted to the output
node in the propagation-block phase. However, the repetition
of the pair of impulses leads to transmission of the input
signal to the output node even if the pulses cannot surmount
the branch point for larger time lags.

We also discuss the effect of aperiodic stimulation on the
input-output signal relationship. Here, the aperiodicity is
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FIG. 2. The excitable system with the trifurcated structure is
approximated by FHN elements arranged on the cables. At each
node, we settle one FHN excitable element. Each element is
coupled diffusively with its neighbors. A,, B,, and C, denote the
terminal nodes, where the input and the output signals are either
applied or detected.

simply introduced as follows: the time intervals between suc-
cessive impulsive inputs are randomly distributed around the
mean interval, and the fluctuation is assumed to be Gaussian
white noise. Since the fluctuation is smaller, the distribution
of the interspike intervals (ISIs) of the output node shows a
multimodal form. However, the unimodal distribution is ob-
tained for larger fluctuations. Furthermore, when the mean
interval of successive stimuli is approximately matched with
a characteristic time scale of the excitable element, a reduc-
tion is observed in the case of the fluctuations of the time
intervals between output signals.

The paper is organized as follows. A simple mathematical
model, i.e., a chain of excitable elements aligned on a trifur-
cated structure, is introduced in Sec. II. The response to a
single input impulse on the output node is discussed in Sec.
IIT A. The propagation delay induced by the branch point is
studied in Sec. III B. Section III C describes the response to
the repetition of impulses. The relation between input and
output signals under a pair of external stimuli is shown in
Sec. III D and that under a repetition of the pair of impulses
is described in Sec. III E. The effect on the output signals of
fluctuation in the time interval between successive input im-
pulses is presented in Sec. IIT F. Section IV concludes the
paper with a brief summary and some discussion.

II. MODEL

The model considered here is a chain of excitable ele-
ments arranged in a trifurcated structure, as depicted in Fig.
2. The chain of elements, each of which is connected to its
neighboring nodes diffusively, represents an excitable cable
in which a pulse can propagate. The diffusive coupling is
considered as a Eulerian discretization of a Laplacian, that is,
the general discretization scheme for one or more parabolic
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partial differential equation(s) [PDE(s)] defined on an inter-
val. At the branch point O (see Fig. 2), it is natural to intro-
duce the diffusive coupling u;+u,+uz—3u,, where u is the
state value of the element at the branch point O, and u, u,,
and u3 represent its neighboring elements. At this branch
point, the membrane potential is continuous and the current
should be conserved. Indeed, the diffusive coupling con-
serves the quantity. In other words, if a system is a network
that consists of a finite number of elements and connecting
nodes, then it can be regarded as a topological graph, and the
Kirchhoff law must hold at each node [21]. Our model is a
special case of such a topological graph system, and it has
only one singular point, the branch point. The model equa-
tions are

TEMSn—i =f(u3n—i’v3n—i) + 6_2(1'{3(n+1)—i + Uz(p-1)-i — 2“311—i)’

d

Evﬁm—i = g(u3n—i’ vSn—i) >

d
TE“O = flug,vo) + 62(“1 + Uy + uz — 3ug),

—vo=g(uy,vp),
dtO g(o o)

U_r=U_1=Uyy, i=0,1,2 and I’l=1,...,N, (1)

where f(u,v)=u(u—a)(1-u)-v and g(u,v)=u—yv are
FitzHugh-Nagumo-type reaction functions [3,22], and «, e,
v, and 7 are parameters. The variables u; and v; correspond
to the activator and inhibitor, respectively. The number of
excitable elements is 3N+ 1. For the terminals of every cable,
we assume the following no-flux boundary conditions:
Uz(n+1)-i=Usn—;» i=0,1,2. The model can also be expressed
in the following matrix form:

d. -,
TEu=f(u,5)

-3 1 1 1 0O 00O
1 -2 0 0 1 00 O0
1 0O -2 0 0O 100 N
+é u,
1 0 0O -2 0 010
0 1 0 0 -2 001
(2)
d. ...
- = b b 3
dtv g(u,v) (3)
where  u=(ug, " usny), U=V, ",Usne1)s  S,0)

=(flug,vo), "+, flusns1,03n41)), and g(u,v)=(g(ug,vp), ",
g(u3n41,03n41)). The behavior of pulse propagation in the
chain is qualitatively the same as that in the one-dimensional
FHN partial differential equation, that is, the Laplacian can
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FIG. 3. Typical time evolutions of the solitary pulse generated by a single impulse. The parameters are e=1.0, y=1.0, and 7=0.017. (a)
Distributor: a=0.002; the solitary pulse surmounts the branch point O and propagates in the daughter cables B and C. (b) Propagation block:
a=0.005; the solitary pulse propagates in the father cable and vanishes at the branch point. (c¢) Transient propagation: @=0.017; the pulse
propagates transiently and disappears before it reaches the branch point.

be discretized with a nearest-neighbor approximation. A
stimulus to the terminal node 3N—-2 leads to the generation
of a pulse that propagates in the cable with the parameters
(@=0.001, y=1, 7=0.017). The significant difference be-
tween the model and the one-dimensional FHN PDEs is the
existence of a branch point O which has three neighboring
nodes. Therefore, even if the pulse propagates stably in a
cable, i.e., a one-dimensional chain of excitable elements ex-
ists, whether the pulse can surmount the branch point de-
pends on the system parameters. Furthermore, the relation
between the input and output signals depends on the type of
stimulation: a single impulse, a pair of impulses, or succes-
sive impulses. In the following sections, we numerically in-
vestigate the dynamical behavior of pulses and characterize
their input-output relation.

When one of the terminal nodes, e.g., A,, is stimulated,
we refer to cable A as the “father” and the other cables, B
and C, as “daughters” [see Fig. 1(a)]. Similarly, when two
terminals A, and B, are stimulated, we refer to cables A and
B as “parents” and cable C as “daughter” [see Fig. 1(b)]. We
call the terminal(s) of the daughter(s) output node(s), and
refer to the terminal(s) where the external impulse(s) are ap-
plied as input node(s).

III. SIMULATIONS

Throughout this paper, we employ a parameter region in
which the FHN element is excitable (the element does not
show spontaneous oscillation). The parameters are fixed as
e=1.0, y=1.0, and 7=0.017, and we mainly investigate the
dynamics of pulse propagation by changing the excitability
parameter «. For external inputs, we consider that two types
of impulsive stimulation are applied to the terminal node(s),
and all the other elements are set to the rest state; (i;,v;)

=(0,0) fori=1,...,3N+1. There are 601 elements, i.e., each
chain is represented by 200 FHN elements.

A. Response to a single impulse

We first investigate the response to a single impulse that is
applied to one of the cable terminals, i.e., the state values
usn_(0) and v3y_,(0) are initialized to u, and v, respec-
tively. We fix the strength of the stimulus as u#,=1.0 and v,
=0.0. Since « is smaller (excitability is higher), a solitary
pulse is generated rapidly, and if the diffusive coupling pa-
rameter € is suitably chosen, it propagates in the cable and
reaches the branch point. Three types of behavior are found
depending on the parameter a. (i) Signal distributor: The
solitary pulse splits into two pulses, each of which propa-
gates in the daughter cables, i.e., cables B and C, and reaches
the output nodes. In this case, the input signal is transmitted
to the output nodes B, and C,. (ii) Propagation block: The
solitary pulse propagating from the input node disappears at
the branch point. (iii) Transient propagation: A stable soli-
tary pulse is not formed. The pulse propagates transiently
and disappears before it reaches the branch point O.

In Fig. 3, the sequences of snapshots of the spatial pattern
are depicted for different values of a. Since excitability is
higher for smaller «, the solitary pulse surmounts the branch
point and splits into two pulses, each of which propagates in
one of the daughter cables B and C. Then, both pulses finally
reach the output nodes B, and C, with the following param-
eters: @=0.01, e=1.0, y=1.0, 7=0.017, and N=200. The ex-
citable elements arranged in a trifurcated structure act as the
signal distributor with these parameters [see Fig. 3(a)]. In
general, the diffusion of the activator suppresses the excita-
tion. Further, the effect of the diffusion of the activator at the
branch point u is effectively larger than that at the other
node resulting from the existence of three neighboring nodes
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uy, Uy, and usz. Therefore, the solitary pulse cannot surmount
the branch point [Fig. 3(b)]. The signal is blocked and cannot
be transmitted to the output nodes. As « increases further, the
solitary pulse no longer propagates stably in the father cable.
The pulse propagates transiently and eventually disappears
before it reaches the branch point. It is well known that an
isolated pulse undergoes a saddle-node bifurcation above a
certain threshold value of « [23,24]. The collision of a stable
pulse branch with an unstable pulse branch occurs at the
saddle-node point. The saddle-node bifurcation can be intu-
itively understood if we consider the activator pulse as a heat
source (not unlike a fire front in a bushfire). The width of the
pulse decreases with increasing « because the excitability of
the element is lower. Hence, the heat contained within the
pulse decreases. At a critical width, or critical «, the heat
contained within the pulse is too small to ignite the element
in front of the pulse.

To characterize these behaviors, we calculate a signal
propagation distance. Here, we regard the element i as ex-
cited nodes if u,(r) exceeds u.=0.5 for any +>0. The signal
propagation distance can be defined by

D =max d(A,,u;),
iem

M={i| 3t > 0) Aluit) > u 1}, (4)

where M is a set of indices of the excited nodes, and d(-)
represents the distance between two nodes. D measures how
far the input signal is transmitted. The measurements of D as
a function of the excitability threshold « shown in Fig. 4(a)
display the existence of three phases clearly. The plateau
a€[0,a,=0.0028] corresponds to a complete signal trans-
mission, that is, the pulse generating at A, propagates and
reaches the output nodes B, and C,. Because we represent
each cable as a chain of 200 FHN elements, the maximum
distance between any two nodes is 400. For intermediate
values of aE€[a;,a,=0.0168], it is observed that the signal
is blocked at the branch point, i.e., the pulse entering the
branch point recedes and disappears. The signal propagation
distance for lower excitability, &> a,, depends on «. In this
case, the pulse propagates transiently in the father cable, and
the propagated distance decreases with increasing a.

Figure 4(b) shows the propagation distance in an (a, €)
parameter space. When € is smaller, the pulse is not elicited
because the single stimulus to one terminal element is not
sufficient to induce excitation. It is also observed that su-
prathreshold excitation is not elicited for larger diffusive
coupling €. As a result, distributor, propagation-block, and
transient-propagation phases are observed only when € is an
intermediate value, as shown in Fig. 4(b). In the following
section, we investigate the parameter region in which these
three phases exist.

B. Branch-point-induced propagation delay

It is known that local geometrical inhomogeneities pro-
duce extra delay in the pulse propagation [13,18]. The
branch point is an additional source in the delay of signal
transmission when « is below a critical value «;. Our system
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FIG. 4. (a) a dependence of the propagation distance for the
solitary pulse elicited by the single impulse. The plateau in the
region a€[0,a;=0.0028] corresponds to the distributor phase.
However, the pulse is blocked at the branch point for e €[, ay
=(0.017]. For a> a,, the pulse propagates transiently and disap-
pears before it reaches the branch point. (b) Propagation distance in
(@, €) parameter space. The white and light-gray regions correspond
to D=400 (distributor phase) and D=200 (propagation block), re-
spectively. The dark-gray region shows transient propagation. The
action potential is not elicited in the black region. The other param-
eters have the same values as in Fig. 3.

also shows that the elapsed time, i.e., how long a solitary
pulse generated at the father terminal takes to reach the
daughter terminals, becomes longer with increasing «. This
is caused because, when the excitability of the medium de-
creases with increasing «, the critical strength of the external
stimulus that can lead to the excitation of the FHN element
will become larger. The pulse propagating from the father
cable acts as the stimulus for generating the excitation of the
element at O, and the large excursion takes a longer time in
the vicinity of the critical strength. In Fig. 5, the elapsed time
as a function of the parameter « is depicted. The local propa-
gation delay introduced at the branch point shows nonlinear
dependence on a, and the elapsed time increases with a. For
a> a4, the propagation block is observed, i.e., the pulse en-
tering the branch point decays and disappears at the branch
point.

C. Response to the repetition of a single impulse

The repetition of a single impulse to A,, i.e., the node
3N-2, leads to an exotic spatiotemporal behavior. We con-
sider the following impulsive stimulation at the node A,:

056215-5



T. YANAGITA

|
I
3 13 |
& !
5 12.5 |
5] 1
1
12 i

0 0.001 0.002 0.003
[o¢ 0(1

FIG. 5. « dependence of elapsed time is shown. Because a
larger value of « results in lower excitability, the pulse takes a
longer time to surmount the branch point, at which the effective
diffusion of the activator is larger. The function shows nonlinear
dependence on parameter «, and it takes larger values in the vicinity
of a;. The parameters have the same values as in Fig. 3.

usn_o(t;) = ug,

van-a(ti) = v, (5)
where ¢, is a sequence of times defined by
tET, T={t|t,=nt, nE€ N}, (6)

where t, is the repetition period. A pulse train is generated by
the sequence of impulses. In the propagation-block phase,
each pulse propagates in the father cable until it reaches the
branch point, and disappears there if the repetition period is
sufficiently longer. However, the spatiotemporal behavior be-
comes more complex for the repetitive stimulation because
of the effect of interaction among the pulses propagating in
the cable [10]. The input-output relation—whether the peri-
odic stimulation leads to excitations of the output nodes—
crucially depends on the repetition period.

To characterize this response to periodic stimuli, the
stimulus-response ratio (SRR) has been used [4,5,10,25]. For
reaction-diffusion systems on a graph, we introduce the SRR
as the ratio of the number of excitations of the output node
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B, to the number of stimuli. Figure 6 depicts the SRR for
three phases, the signal distributor, propagation block, and
transient propagation, as a function of ¢#,. Since the distances
between the pulses generated by successive stimuli are
longer for #,>> 1, the spatiotemporal behavior for periodic
stimuli is essentially the same as that for the single impulse.
Indeed, the SRR in the signal distributor phase equals 1 for
t,>3.8 [see Fig. 6(b)]. This means that each stimulus gener-
ates a pulse that propagates until it reaches the output nodes,
i.e., two terminals of the daughter cables B, and C, excite
every stimulus cycle. When the phase is a propagation block
or transient propagation, the SRR equals zero for longer f,,
that is, all pulses vanish before reaching the output nodes
[Figs. 6(b) and 6(c)].

The spatiotemporal behaviors of successive pulses for
larger ¢, are consistent with those obtained in the case of the
single impulsive stimulus as described in the previous sec-
tion. However, an unexpected input-output relationship
emerges for shorter repetition periods. For the signal-
distributor phase, there are regions of repetitive periods,
t,€[1.5,2.1], [1.85,2.05], [2.55,2.95], and [3.4,3.6], where
the SRR in Fig. 6(a) is smaller than 1. The interference be-
tween the preceding and posterior pulses is developed in
these repetition-period regions. As a result, the signal trans-
mission is suppressed, and it is observed as a sudden de-
crease in the SRR in Fig. 6(a). In contrast, the repetitive
stimulation with suitable periods leads to the propagation of
signals beyond the branch point even if the solitary pulse is
blocked at the branch point: the repetition-period regions are
t,€[0.95,1.65], [1.85,2.35] [2.55,3.05], and [3.45,3.85] in
Fig. 6(b). Furthermore, even in the case of the transient-
propagation phase in which the solitary pulse vanishes be-
fore it reaches the branch point, a suitable periodic stimula-
tion leads to the transmission of input signals [Fig. 6(c)].
Several observations mentioned in the last few paragraphs
indicate that we can enhance or suppress the signal transmis-
sion by tuning the repetition period. The enhancement or

FIG. 6. Series of SRRs as a function of the
repetition period. When the stimulus period has a
suitable value, the pulse train can propagate until

d . .
() it reaches the output nodes {corresponding to the

plateau near 7,=[1.2,1.5] in (b) and (c), for ex-
ample}, even if a solitary pulse cannot propagate
stably. (a) The signal-distributor phase: a=0.002.
(b) The propagation-block phase: a=0.005. (c)
The transient propagation phase: @=0.017. (d)
The SRR in (¢, 7) parameter space is shown by a
gray scale; the maximum value of 1.0 corre-
sponds to white, and the minimum value 0.0 to
black. The broken lines indicate the times at
which subthreshold excitations occur after a su-
prathreshold excitation. The other parameters

1
(a)
SRR
0
0 1 2 3 4 5
tS
1 0.020
(b)
SRR
0 T
0 1 2 3 4 5
ts
1
(c)
SRR 0.015
0
0

5 have the same values as in Fig. 3.
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FIG. 7. Spatial profile and phase plane plot for monotonic and
oscillating wake pulses propagating in a one-dimensional cable un-
der periodic boundary conditions. To observe the tiny oscillating
wake, we have used the transformation f(x)=sgn(x)|x|""> for u and
v. In the spatial patterns (left side), the full (dotted) line indicates
the profile of f(u) [f(v)]. €=1.0,y=1.0,7=0.017. (a) Monotonic
wake pulse, @=0.1; (b) oscillating wake pulse, a=0.002.

suppression structure in (z,,7) parameter space is shown in
Fig. 6(d).

It is known that there are two qualitatively different pulses
[26], i.e., a pulse that has a monotonic wake and one that has
an oscillating wake (see Fig. 7 for the typical spatial profile
of these cases). Subthreshold oscillations are formed in the
wake of suprathreshold excitation. As shown in Fig. 7(b), the
oscillating wake comprises small successive humps behind
the suprathreshold excitation. The parameter values used
here admit the oscillating wake, and it is known to produce
exotic behavior [10,20,27-29]. Further, it has been shown
that the suppression and enhancement of signal transmission
is a result of interference between the preceding and poste-
rior pulses through the “oscillating wake” of the traveling
pulse [10].

When the repetition period is shorter, more than one pulse
travels in the cable, and a posterior pulse will be affected by
the oscillating wake of the preceding one. Further, the effect
of the wake is excitatory or inhibitory depending on the dis-
tance between pulses (the schematic illustration is shown in
Fig. 8). By the interference between pulses, exotic behaviors,
i.e., the so-called resonance and propagation failure [10],
emerge in the following manner. When the position of the
primary hump of the preceding pulse coincides with that of
the supraexcitation of the posterior pulse, the preceding pulse
affects the posterior pulse excitatory (see Fig. 8 for a sche-
matic explanation). Consequently, the wake of the preceding
pulse supports the propagation of a posterior pulse, and the
pulse train travels stably in space even if the solitary pulse
generated by a single impulse vanishes before reaching the
branch point. In the case of the suppression of signal trans-
mission, a sudden decrease in the SRR is observed, as de-
picted in Fig. 6(a), and the corresponding spatial profile of
traveling pulses is shown schematically in Fig. 8(c).

For a trifurcated structure, the propagation block results
from a local inhomogeneity, and, further, the repetitive
stimulation affects the spatiotemporal behavior. To character-
ize statistical changes in input-output relationships, we cal-
culate the probability density of the interspike interval,
which is defined as follows. We define a sequence of times T
at which excitations of the output node of daughter cable A,
occur as follows:
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FIG. 8. Interaction between successive pulses propagating in a
cable shown schematically. The interaction between pulses is exci-
tatory or inhibitory depending on the distance between them. (a)
Spatial profile of solitary pulse with an oscillatory wake. The sub-
threshold oscillation exists behind the suprathreshold excitation
(subthreshold humps are magnified for clarity). The dotted line rep-
resents the position of the first subthreshold excitation of the pre-
ceding pulse. (b) When the position of the primary hump of the
preceding pulse (the solid curve) coincides with that of the suprath-
reshold excitation of the posterior pulse (the broken curve), the
preceding pulse evokes the excitation of the posterior pulse. (c) The
preceding pulse suppresses the excitation of the posterior pulse
when these positions are mismatched.

T={ ti|[“AE(ti) =uJn [dMAE(ti)/dt > 0]},

where u,=0.5 is a threshold parameter. The set of ISIs S is
calculated from the time difference between the successive
excitations:

S={sls;=ti,1—1,1; ET}. (7)

The probability as a function of the time interval between
adjacent excitations, P(s), is called the ISI distribution, and
is often used to characterize neural activities [30]. In Fig. 9,
the ISI distributions normalized by ¢, are plotted for the
signal-distributor and the propagation-block phases after an
initial transient dies out, i.e., for i > 1. Here, we show the ISI
distribution series in order to show the repetitive period de-
pendency. In the case of the signal-distributor phase, the ISI
distributions are unimodal functions, and the time interval
for the maximum is unity for larger #, values [see Fig. 9(a)].
This indicates that output nodes are excited by every external
stimulus. In contrast, the ISI distributions are multimodal for
the propagation-block phase. Further, the ISI takes discrete
values, that is, integral multiples of the external period. This
means that the trifurcated network acts as a band-pass filter,
that is, the output nodes fire only for specific repetition-
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FIG. 9. Sequences of the normalized ISI dis-

tributions are shown as a function of the repeti-

tion period f,. (a) The signal-distributor phase,

a=0.002. For larger ¢, the distributions are uni-

modal, and the probability takes a maximum

when ISI equals #,. (b) The propagation-block

phase, @=0.003. The distributions are multimo-

dal, and each peak appears in the vicinity of in-

tegral multiples of the external period.

ISI/tS ISI/tS

period regions. This recovery of signal transmission, which
we have observed in the propagation-block phase, occurs in
the following manner. After a pulse generated by a stimulus
vanishes at the branch point, the state values of the elements
in the vicinity of the branch point, u; and wv; for
i€{0,1,2,3}, oscillate in time. If the posterior pulse arrived

at the branch point in a certain time frame, during which u,
takes a larger value than some positive threshold, the oscil-
lation of the branch-point element results in transmission to
the output nodes.

In order to observe the relation between the input and
output signals, we calculate the correlation function

c(n) = [uAe(t) - MAe(f)][uce(f -7)- Mcc(f - 7] / (\/[MAE(t) - MAe(t)]z \/[ucc(f -7)- Mcc(f -9,

where x(r)=[[{x(t)dt]/ T represents averaging over a long
time for a given variable x (note that Uy, and Uc, are state
variables of the input and output nodes, respectively). c(7) is
an oscillatory decreasing function and takes a maximum at a
finite 7 due to the time delay between the input and output
signals. Hence, we estimate the maximum of the correlation
function é=|c(7)|=max,|c(7)| as a measure of the correlation
between the input and output signals. In Fig. 10, the maxi-
mum is shown as a function of the repetition periods. The
correlation is approximately 1 for a larger repetition period
of the signal-distributor phase, i.e., the output nodes almost
always respond with regard to longer repetition periods [Fig.
10(a)]. For a shorter repetition period, however, the maxi-
mum correlation takes a smaller value resulting from propa-

gation failure due to inhibitory interaction between succes-
sive pulses, as is schematically shown in Fig. 8(c). In the
case of the propagation-block phase, on the other hand, the
maximum correlation takes a higher value in some regions,
where signal transmission is recovered by the excitatory in-
teraction between successive pulses. These observations are
consistent with those in the SRR shown in Figs. 6(a) and
6(b).

Briefly, most of the pulses generated by inappropriate rep-
etition periods annihilate at the branch point in the case of
the distributor phase, and the signals generated by suitable
repetition periods are transmitted to the output nodes in the
case of the propagation-block phase. A correlation emerges
between input and output excitations in these parameter re-
gions, even if a single impulsive stimulus does not cause any

1 (a) 1

(b) FIG. 10. Maximum correlation as a function

of the repetition period. (a) The signal-distributor
phase, @=0.001. For larger ¢, the maximum cor-
relation is approximately equal to 1, meaning that
the output node almost always responds to the
periodic stimulation. (b) The propagation-block
phase, a=0.003. The output nodes only respond

10 to specific repetition periods.
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a pair of impulses
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FIG. 11. Sequences of snapshots of the spatial pattern of u;().
The input nodes A, and B, are excited at t=0 and t=1,,, i.e., the
two nodes are stimulated with a time lag 7,,,. (a) #;,,=1.0; for longer
time lags, the signals are blocked at the branch point. (b) #,,
=0.03; when the time lag between the stimuli is short, the signal can
transfer to the daughter cable.

excitation of output nodes. These results indicate that the
system performs similarly to band-pass and band-stop filters,
depending on its parameters.

D. Response to a pair of impulses

In this section, we investigate the response to a pair of
impulses with a time lag #,,,, each of which is applied to two
different terminal nodes A, and B,. Here, we consider the
following pair of impulses, i.e., we specify the state values of
these input nodes by the following equations:

u3n-2(0) = u,
v3n-2(0) = vy,
Usn-1(f1qg) = Uos

U3n-1(t1ag) = V0. (®)

As we have seen, the solitary pulse generated by the single
impulsive stimulus cannot surmount the branch point as in
the propagation-block phase, i.e., =0.002. Even in this situ-
ation, however, applying the pair of impulses at two different
terminals leads to the transmission of the signal beyond the
branch point.

When the time lag between the pair is sufficiently large,
the two pulses generated at t=0 and r=1,,, cannot surmount
the branch point (each pulse is blocked at the branch point,
which means that the two pulses do not interact and each
pulse behaves like a solitary pulse generated by a single im-
pulse). The spatiotemporal behavior is shown in Fig. 11(a).

In Fig. 11(b), the series of spatial patterns for the recovery
of propagation due to a pair of impulses with a smaller time
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400

tlag

FIG. 12. Contour plot of signal propagation distance D in
(tlag,a) parameter space. The pair of impulses is applied to the
terminal nodes A, and B, with a time lag #;,,. White regions corre-
spond to D=400, i.e., the complete propagation of the successive
pulses. The gray region a;<a<a, corresponds to D=200 (the
propagation block). Although the solitary pulse is blocked at the
branch point as shown in Fig. 3(b), the pair of input signals is
transferred to the output node when the time lag between them is
sufficiently short. Furthermore, for a longer time lag, there are iso-
lated white regions, i.e., f;,, €[2.05,2.1], [2.9,2.95], and [3.65,3.7]
indicated by (0), (i), (ii), ..., (vi), in which the signal transmission is
recovered.

lag is depicted. For shorter time lags, two pulses propagating
from the parent cables arrive at the branch point synchro-
nously, or nearly so (with a time lag #,,). Thus, the state
values of the two nodes connected to the branch point,
(uy,v,) and (u,,v,), are nearly identical. Remember that the
propagation block is a result of the effective increase of dif-
fusivity due to the existence of three neighboring nodes at
the branch point. The synchronous arrival (head-on collision)
at the branch point reduces the diffusion of u effectively.
This implies that the pulses behave as if they propagate in a
normal cable whose elements have two neighboring nodes.
Thus, the pulses surmount and propagate continuously
against the effect of inhomogeneity, although there is a tiny
time delay at the branch point. These results show that the
Y-junction excitable cable functions as a coincidence detec-
tor in the following sense. The input signals can transfer to
the output node, only if the two pulses enter the branch point
synchronously, or nearly so.

In Fig. 12, the signal-propagation distance D defined by
Eqs. (4) is plotted in (#,,,a)-parameter space. In the
transient-propagation phase a> a,, both pulses produced by
the pair of impulses cannot reach the branch point, and thus
D is less than 200. In the signal-distributor phase a<<ay,
each input impulse leads to the excitation of the output node
for any f,,,. In the propagation-block phase o) <a<a, in
Fig. 12; however, most pulses vanish at the branch point (the
gray region in a; < a <<, corresponds to the occurrence of
the propagation block). As previously noted, the recovery of
signal transmission is clearly recognized in the case of the
pair of input impulses with shorter time lags, i.e.,
114 €[0.0,0.4] [white region indicated by (0) in Fig. 12].
Furthermore, the signals can also be transmitted to the output
node in the isolated white regions, i.e., #,,,E[2.05,2.1],
[2.9,2.95], and [3.65,3.7] in Fig. 12 indicated by (i), (ii), ...,
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FIG. 13. SRR as a function of the time lag
between the pair of impulses for the propagation-
block phase, @=0.005. A pair of impulses is ap-

plied periodically to the nodes A, and B, with a
time lag #,,,. (a) £,=5.0: input signals with a
longer interval are transferred to the output node
when 7,,,<<0.45 although the solitary pulse is
blocked at the branch point, as shown in Fig.
3(b). (b) t,=2.2: when the repetition period has
intermediate values, positive SRR regions,
115 €[1.05,1.3] and [1.7,2.0], appear. The SRR
is approximately equal to 1/2. (c) t,=1.45: there
are unsteady regions f,,, €[0.8,3] and [1.5,2.0]
where the signals are transmitted to the output

T. YANAGITA
! (a)
SRR (d)
0
0 1 2
tlag
! (b)
SRR
0
0 1 2
tlag
1
(c)
SRR
0 tlag
0 1 2
tlag

(vi), where D equals 400. These regions originate from the
coordination between the suprathreshold pulse generated at
t=1;,, and the subthreshold humps arising after the disap-
pearance of the pulse generated at =0. Thus, the recovery of
transmission occurs if the time lag 7;,, is approximately equal
to the integral multiples of the oscillation period, i.e., an
intrinsic period f,, that can be estimated as follows. The in-
trinsic period originates from the period of the oscillating
wake of the traveling pulse. This oscillation can be deter-
mined by the eigenvalues of the uniform stationary solution
(u,v)=(0,0), which are given by

Ne=[-a-yr=\V-4(1 + ay) 7+ (a+ yD?)(27).
Therefore, the intrinsic period is given by

; )

where Im(-) represents the imaginary part [10].

The dynamics of the recovery of the pulse transmission is
outlined as follows. After the suprathreshold excitation (gen-
erated by the impulse at 1=0) disappears at the branch point,
the state value u of the nodes in the neighborhood of the
branch point oscillates due to the wake. When the posterior
pulse arrives at the branch point within a certain time inter-
val, during which u, takes a positive value larger than a
certain threshold value, it surmounts the branch point. In
other words, the posterior pulse entering the branch point can
surmount it only with the aid of the aftereffect of the disap-
pearance of the preceding pulse. Thus, whether the signals
are transmitted to the output node depends crucially on the
time lag between the pair of impulses. The isolated white
regions in Fig. 12 indicated by (i), (ii), ..., and (vi) corre-
spond to the recoveries of signal transmission by the assis-
tance of the first, second, ..., and sixth subthreshold humps,
respectively.

t, = 2/|Im(\)

E. Response to the repetition of the pair of impulses

The spatiotemporal behavior in response to the pair of
periodic stimulations depends on the time lag 7,,, and the

node irregularly. (d) The SRR in (15, is
shown by a gray scale; the maximum value of 1.0
corresponds to white, and the minimum value 0.0
to black.

repetition period f,. The pair of impulses is applied to two
nodes A, and B, instantaneously, that is, the state values of
the two nodes Uy, and ug, are specified by the following
equations:

usn-1(t;) = up,
Usn_o(t; = taq) = Uy,
v3n-1(t) = Vo,

Usn-2(ti = t14e) = Vo, (10)

where f;€ 7 is an element of the set of time defined in Egs.
(6). Here, we examine the effect of the repetition for the
propagation-block phase.

To observe the (t,,1,,)-parameter dependence of input-
output relation, we calculate the SRR as a function of #,, for
three different values of the repetition period, i.e., #,=5.0,
2.2, and 1.45. The parameter dependency for the
propagation-block phase is depicted in Fig. 13. When the
repetition period ¢, is larger, the transmission property of
pulse trains generated by the repetition of the pair impulses
does not change. The recovery of the pulse propagation oc-
curs only for a smaller time lag between the pair of impulses
[see Fig. 13(a)]. This is because the branch-point oscillation
after the disappearance of the pulse decays before the suc-
ceeding pulses arrive. The input-output relationship in the
case of the repetition of the pair impulses is essentially the
same as that in the case of the single pair of impulses dis-
cussed in the previous section—if the time lag between the
pair is shorter than a critical value, i.e., 1;,,<0.45, all the
pulses generated by the repetition of the pair of impulses are
transferred to the output node; otherwise, they are blocked at
the branch point.

However, the repetition of the pair of impulses with a
shorter 7, results in the propagation of pulses beyond the
branch point, which is clearly observed as positive SRR re-
gions for 7,,,>0.45 in Figs. 13(b) and 13(c). When the rep-
etition period becomes shorter, a complex structure emerges.
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This occurs in the following manner. After the first pair of
pulses annihilates at the branch point, subthreshold oscilla-
tion occurs in the neighborhood of the branch point owing to
the oscillatory wake, as described in the previous section.
This subthreshold oscillation stimulates the subsequent pulse
to surmount the branch point. When the arrival time of the
subsequent pulse at the branch point coincides with the time
at which u becomes larger than a certain threshold value, the
subthreshold oscillation acts as a stimulant for surmounting
the branch point.

In Fig. 13, the plateaus at a value close to a rational num-
ber show the locking state between input and output signals.
Furthermore, the unsteady regions observed in Fig. 13(c) of
the SRR indicate a chaotic (unlocked) state that is a result of
the nonlinear interaction between the aftereffect of the van-
ished pulse and the subsequent pulse entering the branch
point. An irregular time series of output signals is observed
in this unlocked state, and whether the pulse surmounts the
branch point crucially depends on the history of the previous
pulse.

F. Response to aperiodic impulses

In this section, we analyze the effects of the fluctuation of
the repetition period on the input-output relationship. Aperi-
odic impulses are applied to the two terminals A, and B,.
Here, we introduce the fluctuation (or irregularity) of input
signals as follows:

g (1;+ &) = up,
uBg(tj + gj + tlag) = Uy,
va (ti+ &) = o,

UBL,(tj + gj + tlag) =V,

where #; and ¢; are elements of the time sequence defined in
Egs. (6), and the fluctuation & is assumed to be Gaussian

white noise of zero mean:

P(&) = Vm“l’(‘ 202) (11)

where o determines the variance of the fluctuation of the
repetition period. It is also assumed that the noise §; and §;
are independent:

<§i§j>= 51‘,]', (12)

where &;; is Kronecker’s delta.

We calculate the IST distribution defined in Eq. (7) so as
to characterize the effect of the fluctuation statistically. After
an initial transient died out, i.e., for i>1, the ISI distribu-
tions for different values of the variance o of the Gaussian
noise for #,=5.0 are plotted in Fig. 14. When the variance of
the fluctuation is small, the parameter used here shows the
situation in which the input-output signal ratio is locked to
1:1 and the corresponding SRR equals 1. Thus, the ISI takes
the same value of the repetition period, i.e., z,=5.0. When the
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FIG. 14. ISI distributions for different values of the variance of
the fluctuation. The distribution is multimodal for smaller o, and
each peak region is approximately of the Gaussian form. With in-
crease in the variance of the fluctuation, these Gaussian peaks be-
come a unimodal distribution. o?= (a) 0.1, (b) 0.25, and (c) 0.5.
114g=0.1, £,=5.0, and the other parameters are the same as in
Fig. 13.

variance increases, the ISI fluctuates, and the single peak in
the ISI distribution at #,=5.0 broadens. As the variance in-
creases further, i.e., o decreases, a new peak eventually ap-
pears in the ISI distribution. One can see that multimodal
distribution is obtained as shown in Figs. 14(a) and 14(b).
For smaller o, each peak in the ISI distribution is approxi-
mately Gaussian. Finally, by increasing the variance of the
fluctuation, i.e., decreasing o, we observe that each Gaussian
distribution is broadened further, and a unimodal distribution
is formed as depicted in Fig. 14(c). This means that, although
the time intervals between input impulses #; are 5.0, ISIs in
response to the aperiodic input impulses often take very large
values compared to those in response to a periodic one. The
ISI distribution for smaller o is approximately exponential
for longer ISIs. However, for shorter intervals, there is a
rapid decrease in the distribution, reflecting the fact that neu-
rons are refractory immediately after excitation.

In Fig. 15, the ISI distributions of the input and the output
nodes are shown for 7,,=0. Although the mean time lag
between the pair of impulses is zero, there will be a time
delay between the arrival times of pulses propagating from
the two terminals due to the effect of the fluctuation &. It can
be seen that the standard deviation of the ISI distribution at
the output node is smaller than o when the repetition period
is in the neighborhood of integral multiples of the intrinsic
period f, [see Fig. 15(a)]. In other words, the detection of
coincidence by the trifurcated nerve system is robust against
noisy input signals. When the mean repetition period has
intermediate values, i.e., the stimulation intervals are in the
region of (n+1/2)r,, the ISI distribution at the output node is
multimodal as depicted in Fig. 15(b). Each peak corresponds
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FIG. 15. ISI distributions for different values of the repetition
period. The solid and broken lines indicate the ISI distribution mea-
sured at the output node and the input node, respectively. (a) 7,
=3.1: the standard deviation of the ISI distribution obtained at the
output node is smaller than that at the input nodes. (b) 7,=2.5: the
ISI distribution of the output element is multimodal and consists of
two Gaussian peaks. The variances of each peak are smaller than
that of the unimodal ISI distribution measured for the input ele-
ments. 0=5.0 and 7;,,=0. The other parameters are the same as in
Fig. 13.

to integral multiples of the intrinsic period #, in Eq. (9).
Further, the ISI distribution is approximately assembled from
the two Gaussian distributions, each of which has a smaller
variance than that of the original input signals. In both cases,
the ISI distribution measured at the output node has a sharper
peak than that at the input nodes. This means that the fluc-
tuation in ISIs at the output node is reduced through the
interaction of pulses at the branch point.

IV. SUMMARY

We have studied the spatiotemporal dynamics of pulse
propagation in FHN excitable elements, which are arranged
to form a trifurcated structure, i.e., a Y-junction cable. Each
element connects diffusively, and the Kirchhoff law holds at
each node. We have investigated the pulse dynamics re-
sponding to four types of stimulation pattern: (a) single im-
pulsive stimulation, which is applied to one of the terminal
nodes, (b) a pair of single impulses with time delay, which is
applied to two terminals of the cables, (c) repetitive stimula-
tion at one of the terminals, and (d) repetitive stimulation of
the pair of impulses.

A. Single stimulus

When we apply a single impulse at one of the cable ter-
minals, a pulse forms and propagates in the father cable, i.e.,
the cable at which the terminal node is excited. We have
found the following three phases for the spatiotemporal be-
haviors on changing the excitability of an element, the pa-
rameter a.

(i) Signal distributor. When the excitability of each ele-
ment is higher than «;=0.0028, the pulse generated by the
single impulse propagates in the father cable and reaches the
branch point (the junction of three cables). At the branch
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point, the pulse splits into two pulses, each of which propa-
gates in two daughter cables. In this case, the chain of excit-
able elements arranged in the shape of a trifurcated structure
acts as a signal distributor.

(ii) Propagation block. For intermediate values of «, «
<a<a,=0.017, the pulse propagating in the father cable is
blocked at the branch point. The pulse disappears at the
branch point because the existence of three neighboring
nodes increases the diffusion of the activator.

(iii) Transient propagation. When the excitability of the
element is much lower, > «,, the pulse propagates tran-
siently in the father cable, and eventually vanishes before it
reaches the branch point. This transition is a result of the
disappearance of a stable traveling pulse solution through the
saddle-node bifurcation.

B. Repetition of a single stimulus

The repetition of a single impulse shows exotic spatiotem-
poral behaviors through an interaction between previous and
posterior pulses generated by successive stimuli. In particu-
lar, the repetition of a single impulse leads to the surmount-
ing of the branch point even in the propagation-block phase.
The signal transmission is recovered when the repetition pe-
riod takes only specific values. For a signal distributor, all
signals are transmitted to the output nodes when the repeti-
tion period is sufficiently large. However, the signals are
blocked for some specific values of the repetition period.
These phenomena are caused by the interaction between suc-
cessive pulses generated by the repetitive stimulation. The
repetition period plays a crucial role in determining the re-
covery and failure of signal transmission in the propagation-
block and signal-distributor phases, respectively. The output
elements are excited or inhibited depending on the repetition
period, and thus the system acts as a band-pass or band-stop
filter for the repetitive input signals.

C. Pair of stimuli with a delay

We have studied statistics of the output signal when a pair
of stimuli are applied to two different terminals of cables in
the propagation-block phase. Due to the collision between
pulses originating from different sources, whether these
pulses can surmount the branch point depends crucially on
the time lag between the input impulses. The behaviors for
longer time lags are analogous to those observed in the case
of the single impulse; the two pulses generated by the pair of
stimulations disappear at the branch point. However, the pair
of impulses with shorter time lags results in a pulse collision
at the branch point, and it leads to the recovery of signal
transmission. The Y-junction cable act as a coincidence de-
tector in the propagation-block phase.

Furthermore, the recovery is also observed in the case of
suitable delays that are integral of multiples of the intrinsic
period of FHN elements. This recovery of signals with a
larger delay is caused by the interaction between successive
pulses entering the branch point in the following manner.
After the preceding pulse disappears at the branch point
(here, we consider the propagation-block phase), the excit-
able element at the branch point relaxes into a rest state, and
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this relaxation dynamics is a damped oscillation that can be
attributed to the existence of imaginary parts of the eigenval-
ues for the rest state. As a result, this oscillation produces an
inhibitory or excitatory interaction with the posterior pulse
depending on the time delay between the pair of stimuli. If
the arrival time of the posterior pulse at the branch point is a
term that can be defined as the duration for the value of the
activator u, to become larger than a certain threshold value,
the propagation is recovered by the aftereffect of the disap-
pearance of the preceding pulse.

D. Repetition of a pair of stimuli

The relationship between the input and output signals is
also influenced by the repetition of the pair of impulses.
When the time lag between the pair of stimuli and the rep-
etition period is sufficiently large, all pulses vanish near the
branch point for the propagation-block phase. However, the
repetition of the pair of impulses with suitable periods allows
the transmission of signal to the output node again, and this
recovery of signal transmission is a result of the aftereffect of
vanished pulse at the branch point. The interaction between
successive pulses in a cable and the aftereffect of the van-
ished pulse produces more complex spatiotemporal behav-
iors, i.e., behaviors such as the transmission recovery, propa-
gation block, input-output signal locking phenomena, and
irregular excitation of output elements emerge, depending on
the time delay and repetition period.

E. The effect of aperiodicity

We have also studied the response to aperiodic input im-
pulses. The aperiodicity considered here is that both the time
lags 7;,, and the repetition period ¢, fluctuate independently
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in the vicinity of their mean values. When the fluctuation is
smaller, the ISI distribution has a sharp peak at the mean
value of the repetition period if the delay between the pair of
impulses is sufficiently short. As the fluctuation increases, a
new peak appears in the ISI distribution, and the number of
the peaks gradually increases. Each peak is approximately
Gaussian, and it gradually broadens with increasing fluctua-
tion. These Gaussian peaks finally connect to form a unimo-
dal distribution that has an exponential tail for larger ISIs and
has a rapid decrease for shorter ISIs

For a pair of stimuli with varying repetition periods and
time delays, the variance of ISI distribution measured at the
output node is reduced; the variance of the ISI distribution at
the output node is smaller than that at the input nodes. When
a simple Y-junctioned cable collects afferent inputs from
multiple sources, it acts as a fluctuation reducer.

Finally, it is noteworthy that the complex shapes of neu-
rons might play an important role during signal processing.
The results of the above discussion illustrate some aspects of
the nerve cell as the basis for the integration of information
originating from different sources. The neuromorph (a
simple Y-junctioned cable) responds to particular combina-
tions of input patterns in time and space. The study of these
dynamics is of general application in the understanding of
disordered phenomena in spatially extended excitable media,
and it might provide new insight into excitable systems such
as neural dynamics.
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